Tuesday, June 29, 2010
Wednesday, June 23, 2010
Tuesday, April 20, 2010
Monday, March 29, 2010
OpErAtiOn On sEt....
Sunday, March 28, 2010
Interesting about mathematical reasoning....
Here, there are so many interesting game.....
So,to all student or everyone view my blog would like to challenge their knowledge,you can do it by complete the following simple game....(cover only about mathematical reasoning)
Thinking about mathematic...... interesting right????
Hopefully all of you enjoy it....thanks!!!
So,to all student or everyone view my blog would like to challenge their knowledge,you can do it by complete the following simple game....(cover only about mathematical reasoning)
Thinking about mathematic...... interesting right????
Hopefully all of you enjoy it....thanks!!!
Wednesday, March 24, 2010
Ragam housemate ku....
hahaa.....nieh tgn imah.cube tgk die wat per?nk bergmbor,tp jln cm siput....tuh y tertnggal....heheee.sbenarny nk posing y kblkng tuh,tp imah dah cut line r....ciap pkai gelang,comei jri imah....heheeeee
tgk la gayefana tuh, ayu r tuh...heheeee.muker ak,ntah pe2.hahaaa....yg 3 org blkg tuh,posing.nk2 imah....eceh,ciap angkat tgn,lemah lembut r tuh....heheee
hepi kn gmbo ktrng nieh....saper2 tgk pon nk join snyum gak..heheeeee.tp gmbo org tuh jer la y besor.mntang2 die y pgang kamera....cian kt imah kt blkg tuh,nsib bek smpat wat peace....kikihkihkih
yaaaaannnngggg mane saaaaatu.....pilihan mu!!!
heheeee...
imah, aku, zaty, sirin & niniey....
tgk r style imah tuh, da jer kan...huhuuuuu
k....kawan2.Ckup r dlu ragam2 housemateku niey...ti ak amik y pelik2 lgik ea. pastu upload bg korang tgk....hahaaaaa
tgk la gayefana tuh, ayu r tuh...heheeee.muker ak,ntah pe2.hahaaa....yg 3 org blkg tuh,posing.nk2 imah....eceh,ciap angkat tgn,lemah lembut r tuh....heheee
hepi kn gmbo ktrng nieh....saper2 tgk pon nk join snyum gak..heheeeee.tp gmbo org tuh jer la y besor.mntang2 die y pgang kamera....cian kt imah kt blkg tuh,nsib bek smpat wat peace....kikihkihkih
yaaaaannnngggg mane saaaaatu.....pilihan mu!!!
heheeee...
imah, aku, zaty, sirin & niniey....
tgk r style imah tuh, da jer kan...huhuuuuu
k....kawan2.Ckup r dlu ragam2 housemateku niey...ti ak amik y pelik2 lgik ea. pastu upload bg korang tgk....hahaaaaa
Tuesday, March 23, 2010
DuLu Ku sEoRaNG Y GaNAs...heheee
hye sume.....salam.
mule2 dlu ak kadet d PALAPES UPSi,peh byk giler kngn manis & pahit y xkan ak luoekan laa...
dok dlm hutn,jatuh logkang,kena raging,raging org(heeeehee),match netball(johan 3x berturut2),mcm2 laaa....teringat sumer,kt sume pegawai,jurulatih & skuad2 ak tuh...
skang ak dah ayu dah,sopan santun lgik...cheeewahhh.heheeee....dah xkeras pon.
lgipon dah YO(young officer) skang y xaktif nieh...
nek keta kebal mse g Pord dickson...join dak senior mse anual camp....
sweet memories.....(,")
CaMPiNg kt TaSEk bANdiNg....
sweet memories during practicum session....
zaty, imah,fana,sirin,ninie & me(jue)....
ronggeng2 g taman rekreasi....wekend jer kuar,lepak2...lepaskn tension konon...heheeee
wlaupon xda la stress sgt...
nk2 ckgu STAR n ACS tuh...heheee
hepi giler dok serumah...xkering kusi dok pekena dak sorang tuh...kihkih
hopefully....hepi alwayz my frend.
chaiyok3x!!!!
gambate.....(,")
ronggeng2 g taman rekreasi....wekend jer kuar,lepak2...lepaskn tension konon...heheeee
wlaupon xda la stress sgt...
nk2 ckgu STAR n ACS tuh...heheee
hepi giler dok serumah...xkering kusi dok pekena dak sorang tuh...kihkih
hopefully....hepi alwayz my frend.
chaiyok3x!!!!
gambate.....(,")
Diriku insan biase....
Mathematical reasoning(form 4)- Worksheet quantifier.
Let us complete this worksheet....
Worksheet 1 (Quantifier ‘all’ or ‘some’.)
1) Rewrite the following statements by using the quantifier ‘all’ or ‘some’ without
changing the meaning of the statement.
a. Several isosceles triangles are equilateral triangles.
b. Any perfect square is a square of a whole number.
c. Not many of the double digit whole numbers are prime numbers.
d. Every mixed number can be converted to an improper fraction.
2) Determine whether each of the following statements is true or false.
a. All integers can be written as a fraction.
b. Al right-angled triangles have the longest side opposite the right-angled
triangle.
c. All prime numbers do not have factors.
d. All sets produce an empty set when they intersect with an empty set.
3) State whether each statement below is true or false. Give an example to support
your answer.
a. All multiples of 12 are divisible by 4.
b. All cube roots of a negative number is a negative number.
c. All fractions can be written in the form p/q, where p and q are integers
and p is greater than q.
d. Al1 the subsets of the set {2, 3, 4, 5} contain at least on element.
4) Determine whether each of the following statements can be generalized by using
the quantifier ‘all’.
a. A negative integer q gives rise to a positive integer when it is squared.
b. The even number 8 is divisible by 4.
c. Trapezium ABCD has two parallel sides.
d. Pentagon PQRST has five sides.
5) Based on the object and the property given in each of the following, construct a
true statement using the quantifier ‘all’ or ‘some’.
a. Object : Integer.
Property : Whole number.
b. Object : Kites.
Property : One axis of symmetry.
c. Object : Fractions.
Property : Smaller than 1.
d. Object : Right angles.
Property : 900
e. Object : Rectangles.
Property : Equal opposite sides.
Worksheet 1 (Quantifier ‘all’ or ‘some’.)
1) Rewrite the following statements by using the quantifier ‘all’ or ‘some’ without
changing the meaning of the statement.
a. Several isosceles triangles are equilateral triangles.
b. Any perfect square is a square of a whole number.
c. Not many of the double digit whole numbers are prime numbers.
d. Every mixed number can be converted to an improper fraction.
2) Determine whether each of the following statements is true or false.
a. All integers can be written as a fraction.
b. Al right-angled triangles have the longest side opposite the right-angled
triangle.
c. All prime numbers do not have factors.
d. All sets produce an empty set when they intersect with an empty set.
3) State whether each statement below is true or false. Give an example to support
your answer.
a. All multiples of 12 are divisible by 4.
b. All cube roots of a negative number is a negative number.
c. All fractions can be written in the form p/q, where p and q are integers
and p is greater than q.
d. Al1 the subsets of the set {2, 3, 4, 5} contain at least on element.
4) Determine whether each of the following statements can be generalized by using
the quantifier ‘all’.
a. A negative integer q gives rise to a positive integer when it is squared.
b. The even number 8 is divisible by 4.
c. Trapezium ABCD has two parallel sides.
d. Pentagon PQRST has five sides.
5) Based on the object and the property given in each of the following, construct a
true statement using the quantifier ‘all’ or ‘some’.
a. Object : Integer.
Property : Whole number.
b. Object : Kites.
Property : One axis of symmetry.
c. Object : Fractions.
Property : Smaller than 1.
d. Object : Right angles.
Property : 900
e. Object : Rectangles.
Property : Equal opposite sides.
Subscribe to:
Posts (Atom)